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Quantum mechanics II, Problems 12 : Group averaging and

Conjugacy classes

Solutions

TA : Achille Mauri, Behrang Tafreshi, Gabriel Pescia, Manuel Rudolph, Reyhaneh Aghaei Saem, Ricard

Puig, Sacha Lerch, Samy Conus, Tyson Jones

Problem 1 : Conjugacy classes and number of irreducible representations

For the groups C3v and Zy compute :

1. Their conjugacy classes.

(a)

C3v : From our understanding of the C3v group we could intuitively guess the conjugacy
class. We have first the class that contain the identity and only the identity (as for every
groups) {e}. Then we have the two rotations {r{,72 = rf} that must form a conjugacy
class and the three axial symmetries {s1, s2, s2}. Now we have to show it. For e we have
geg~! = e as is the case for all groups. Now, note that the composition law for our group
can be summarized in the following formulas :

T’Z'T‘j = Ti-i—ju TiSj = 8i+j7 Sﬂ‘j = Si—ju SZ'S]' = Ti—j (1)

Then for r1 and 7o we can show that s;r;s; = r_;. Finally, note that s;s;s; = s; and
ri8;7; 1 = s2i4;. We then have three conjugacy class : {e}. {r1,ro} and {s1, s, s3}. The
proof we provided in here follows for the case of the general Dihedral group, which is
the symmetry group of a general regular polygon (you can read more about it in the
Wikipedia page). Check it !

Zn @ The group Zy is abelian which means that every element commutes with every
other element. If we use this we have

1

uau! = (ua)u™?

1

= (au)u™t = a(uu™) =ae=a (2)

This means that the only element in the conjugacy class of a, is a. We then have N
conjugacy class {i} Vi € Zy.

2. The number of (non-equivalent) irreducible representations.
Recalling that the number of irreducible representations is equal to the number of conjugacy
classes, N, = N, then we have :

(a)
(b)

C3V:N.,=N.=3
ZNy i N.=N.=N

3. The possible dimensions of these irreducible representations.
To find the possible dimensions of the irreducible representations we can use Burnside’s lemma :

N,
Y l=1q (3)
a=1

where |G| is the order of the group, N, = N, is the number of irreducible representations and
for a = 1,..., N, l, is the dimension of the representation a.



(a) C3v : Here we have
B+B3+13=6 (4)
So the only possible dimensions are 1,1 and, 2.
(b) Zy : Here we have

N
Si2=N (5)
a=1

So the only possible dimensions are [, = 1 Va.
Problem 2 : Group representation theory applied to dephasing

You already did the first two questions in the last exercise sessions but the answers are useful
for the next questions.
1. Prove that the Pauli matrices and the identity (times +1, +i) form a (non-Abelian) group
with the matrix product.
A group has to have different properties
— Closeness : As we know 0;0; = i€;j,0%, so the product of two Pauli matrices is a Pauli
matrix with a pre-factor of either +1, =4i, so the product of each of two possible matrices
is in the set of our matrices.
— Associative : the matrix product is associative.
— Identity. the group includes the identity matrix.
— Inverse : 0;0; = |, io; x —io; =1, —1 x —1 = |. So the inverse of each matrix is in the set
of our matrices as well.
2. Prove that if R(g) is a representation of a group G then R(g) ® R(g) is also a representation
of G.
Note that

R(g1) ® R(g1) - R(g2) ® R(g2) = (R(g1) - R(g2)) ® (R(g1) - R(g2)) = R(9192) @ R(g192) (6)

3. Consider a unitary irreducible representation R(g) = U, of group G. Use the Grand Orthogo-
nality Theorem to prove that

1 1
N Y UXUS = S T[X] 1 (7)
g

where d = dim(X) and N is the order of the group.
Because this representation is irreducible, we can use the Grand Orthogonality theorem and
rewrite % > UgX UgT as follows.

S UXUS = o 57 S [0y Xong U]l (8)
g jklm 9
— % > 610 m X 1) (k] 9)
Jkim
_ ézxﬂykw (10)
ik
1
— ~TH{X)1 (11)



4. Use this result to (carefully!) explain why randomly applying either I (i.e, do nothing), o,
oy, or o, (with equal probability) to any single qubit state on average results in the maximally
mixed state.

We can consider the group of Pauli matrices and identity with +1 and 4 prefactors that we

had in the first part of the question and use the result in the third part to write the average
of X.

— Z U, pUJr — 4IpI +doyp0y + doypoy + 4o ,po) (12)

2

(IpI + 0ypoy + oypoy + 0.p0) (13)

NH

where N = 16 is the order of the group. So averaging over all elements of the group is equal
to randomly applying either I, 0., oy, or o, with probability 7 to any single qubit state. And
then from the previous part, we know that it is equal to the maximally mixed state.

1 1 1
Z(ij + 0upoy + Oypoy + 0.po) = §T1"[P]I = 51 (14)

5. Consider now instead a completely reducible unitary representation U, = @R (g) where the
Ry (g) are di dimensional unitary irreducible representations. It can be shown that

()6 =+ 2 U x0) = 3 T - gy T (15)
g

k k

Here the notation have been updated the same way as in the lecture note. If you did not see
the mail or the post on the forum you can look the new version of the lecture notes (Chapter
9 - Symmetry Part 3 - p. 124-125.
What are II; and dj in this expression ?
11, are the projectors to the subspace the irreductible representations is acting on and d, are
their dimensions. I, = Y, |z, ) (x, 1.

6. The above relation for averaging over representations of finite groups, Eq. , generalizes to

averaging over compact Lie groups. In this case the finite average % >_y becomes a continuous
integral over a uniform measure [ du(g) and we have :

(X)e ::/Gdu(g)UgXU;f:@ﬂ[ilin]Ik. (16)
k

Use this result to derive an explicit expression (i.e. compute the relevant dj and IIj) for the
averaged state p that results from randomly evolving p under the tensor product of two random
single qubit unitaries. That is, from apply U ® U with U € U(2), to any two qubit state p,
and then averaging :

<p>=/U(2)duU®UpU*®U*- (17)

The easiest way to do this is to find something that commutes with this and that we know
how to diagonalise. Then we can use that basis. As we have seen in class [U ® U, SWAP] = 0,
therefore we can use the SWAP basis to find the projectors of the irreductible representation.



The basis of the SWAP is the symmetric and antisymmetric spaces, i.e. with an eigenvalue
)\+ — ].

|¢0) = [00) (18)
|¢1) =[11) (19)
1
|é2) =—=(110) +[01)) (20)
(21)
and with eigenvalue A\_ = —1
1
|¢3) ZE(HO) —[01)) (22)
the corresponding dimensions are d4 = 3, d_ = 1. Therefore, from 5. we have
2
(o) = 3T [Z B0 p] Iy & Tel|6s )05 1 (23)
i=0

. Hence (or otherwise) compute the states that result from averaging (i.e, compute (p) in
Eq. ) for the following states :

i. p=|@F)(®F| with |[@F) = —5(]00) + [11))

ii. p =[O~ )(U~| with [¥~) = %(yon —[10))

iii. p =100)(00|

iv. An arbitrary tensor product two qubit state p ® o (hint : use the Bloch vector representa-
tion).

i. This state is in the symmetric space, thus

1
() =310

ii. This state is in the anti-symmetric space
(p)=03®1

iii. This state is in the symmetric space, thus

() = %13 0
iv. There are several ways of solving this problem, but some of the are very cumbersome. Let’s
try and be smart. We start by denoting p = %(I + nyoy + nyoy +n,0,), 0 = %(I 4+ Mmyoy +
myoy+m.o.). Now, by applying the formula from the previous sections that links the average
to the trace of the invariant subspaces (irreducible components), we find that we only need to
compute the traces. Moreover, note that it is actually very easy to calculate the total trace
as :

Tr(I® 1) N Tr(I ® m.o) N Tr(n.o ® 1) n Tr(n.c ® m.o)

T =
H(p®0) 4 A A 1

=14+0+0+0=1 (24)



Now let us find the projector onto the anti-symmetric space (Note that it is also correct to try
and do this for the symmetric space but it takes longer) :

Hanti—sym = |¢3> <¢3‘ (25)
Now, let us calculate the final piece :

Tr(I @ IMlgnei— Tr(l ollgnti—
Tr(p@o-nanti_sym) = r( ® anti Sym) + r( ®m0 anti sym)

Tr(n.0c ® Manti—sym) n Tr(n.c ® m.ollgnti—sym)
4 4

The first term is trivially equal to %. You can check (convince yourself!) that the other terms
have zero contribution unless for the case where 0, ® 0, 0, ® 0y and, 0, ® .. Therefore, we
have :

1—nm
TI'(p ® UHanti—sym) = T (27)
As the sum of the two traces must be equal to the total trace 1, we also have :
3+nm
Tr(p ® ollgym) = 1 (28)

Then the average state will be

1 /3+nm l1—nm
= — _— — I
(p® o) 3< 1 >-73€B< 1 ) 1

Alternatively for 6. and 7., we can use properties of the SWAP operator as follows.

First, in 6. notice that the projectors onto the symmetric and antisymmetric subspaces are
respectively given by

Iy = io i) i| = w (29)
I = [ggfes] = Tt VAL (30)

Therefore, we have
() = 5 Te [T ] T, + T[] T (31)
= L2 (omvly) - meswaP) + 2 (Tr{SWAP] — T (32)
—ﬂfﬂ@—ﬂﬁW%mm+SW%P@%ﬁW%Eﬂ—U, (33)

where the last equality holds since p is a quantum state.

From this expression, averaging over the states in 7. is quite straightforward. Indeed, as states

p in both i. and iii. are in the symmetric subspace we have Tr[pSWAP| = 1 which leads to
114+ SWAP 1

(p) = 5 "3t

Similarly, the state in ii. is in the antisymmetric subspace. In this case, we have Tr[pSWAP] =
—1 which gives

(34)

1 1-SWAP

5 _=p. (35)

()

5



Finally, for iv. we use the property Tr[(A ® B)SWAP] = Tr[AB] for any operators A and B
(you can verify it your-self as an exercise). This leads to

(0 0) = 11 (2 Tifpo]) + O

(2Tr[po] — 1) . (36)

Moreover, if we define the Bloch vectors r; and ro corresponding respectively to states p and
o, we can easily show (exercise!) that

1 .
Tifop) = — 12 (37)
This leads to 191 SWAP
<p®0>=T(3—I’1~I’2)+ ry-ro. (38)

Can you relate this with the previous answer ?
More useful properties of the SWAP operator

You can further rewrite it in the Pauli basis (more conventional) using the Pauli decomposition
of SWAP i.e. )
SWAP = — > cRo, (39)

oe{l,oz,04,0.}

which you can try to prove as an exercise. More generally, if SWAP acts on two n-qubits space
(i.e. SWAP is of dimension 2%7), we have

1
SWAP = — > ocRo. (40)

n
oe{l,04,0y,0.}%"

(hint : use Tr[(A ® B)SWAP] = Tr[AB] with A® B € {1,04,0y,0,}%%".)



